sensors HAL

补充《sensor service的初始化》中提到的onFirstRef
主要是在Android的HAL层对底层驱动封装
sensors HAL

frameworks/native/services/sensorservice/SensorDevice.cpp

SensorDevice::SensorDevice()
    :  mSensorDevice(0),
       mSensorModule(0)
{
    status_t err = hw_get_module(SENSORS_HARDWARE_MODULE_ID,
            (hw_module_t const**)&mSensorModule);

    ALOGE_IF(err, "couldn't load %s module (%s)",
            SENSORS_HARDWARE_MODULE_ID, strerror(-err));

    if (mSensorModule) {
        err = sensors_open_1(&mSensorModule->common, &mSensorDevice);

        ALOGE_IF(err, "couldn't open device for module %s (%s)",
                SENSORS_HARDWARE_MODULE_ID, strerror(-err));

        if (mSensorDevice) {
            sensor_t const* list;
            ssize_t count = mSensorModule->get_sensors_list(mSensorModule, &list);
            mActivationCount.setCapacity(count);
            Info model;
            for (size_t i=0 ; i<size_t(count) ; i++) {
                mActivationCount.add(list[i].handle, model);
                mSensorDevice->activate(
                        reinterpret_cast<struct sensors_poll_device_t *>(mSensorDevice),
                        list[i].handle, 0);
            }
        }
    }
}

hardware/libhardware/include/hardware/sensors.h

#define SENSORS_HARDWARE_MODULE_ID "sensors"

/**
 * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM
 * and the fields of this data structure must begin with hw_module_t
 * followed by module specific information.
 */
struct sensors_module_t {
    struct hw_module_t common;

    /**
     * Enumerate all available sensors. The list is returned in "list".
     * @return number of sensors in the list
     */
    int (*get_sensors_list)(struct sensors_module_t* module,
            struct sensor_t const** list);
};


static inline int sensors_open(const struct hw_module_t* module,
        struct sensors_poll_device_t** device) {
    return module->methods->open(module,
            SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
}

static inline int sensors_close(struct sensors_poll_device_t* device) {
    return device->common.close(&device->common);
}

static inline int sensors_open_1(const struct hw_module_t* module,
        sensors_poll_device_1_t** device) {
    return module->methods->open(module,
            SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
}

static inline int sensors_close_1(sensors_poll_device_1_t* device) {
    return device->common.close(&device->common);
}

hardware/libhardware/hardware.c

int hw_get_module(const char *id, const struct hw_module_t **module)
{
    return hw_get_module_by_class(id, NULL, module);
}

int hw_get_module_by_class(const char *class_id, const char *inst,
                           const struct hw_module_t **module)
{
    int status;
    int i;
    const struct hw_module_t *hmi = NULL;
    char prop[PATH_MAX];
    char path[PATH_MAX];
    char name[PATH_MAX];

    if (inst)
        snprintf(name, PATH_MAX, "%s.%s", class_id, inst);
    else
        strlcpy(name, class_id, PATH_MAX);

    /*
     * Here we rely on the fact that calling dlopen multiple times on
     * the same .so will simply increment a refcount (and not load
     * a new copy of the library).
     * We also assume that dlopen() is thread-safe.
     */

    /* Loop through the configuration variants looking for a module */
    for (i=0 ; i<HAL_VARIANT_KEYS_COUNT+1 ; i++) {
        if (i < HAL_VARIANT_KEYS_COUNT) {
            if (property_get(variant_keys[i], prop, NULL) == 0) {
                continue;
            }
            snprintf(path, sizeof(path), "%s/%s.%s.so",
                     HAL_LIBRARY_PATH2, name, prop);
            if (access(path, R_OK) == 0) break;

            snprintf(path, sizeof(path), "%s/%s.%s.so",
                     HAL_LIBRARY_PATH1, name, prop);
            if (access(path, R_OK) == 0) break;
        } else {
            snprintf(path, sizeof(path), "%s/%s.default.so",
                     HAL_LIBRARY_PATH2, name);
            if (access(path, R_OK) == 0) break;

            snprintf(path, sizeof(path), "%s/%s.default.so",
                     HAL_LIBRARY_PATH1, name);
            if (access(path, R_OK) == 0) break;
        }
    }

    status = -ENOENT;
    if (i < HAL_VARIANT_KEYS_COUNT+1) {
        /* load the module, if this fails, we're doomed, and we should not try
         * to load a different variant. */
        status = load(class_id, path, module);
    }

    return status;
}

/**
 * There are a set of variant filename for modules. The form of the filename
 * is "<MODULE_ID>.variant.so" so for the led module the Dream variants 
 * of base "ro.product.board", "ro.board.platform" and "ro.arch" would be:
 *
 * led.trout.so
 * led.msm7k.so
 * led.ARMV6.so
 * led.default.so
 */

static const char *variant_keys[] = {
    "ro.hardware",  /* This goes first so that it can pick up a different
                       file on the emulator. */
    "ro.product.board",
    "ro.board.platform",
    "ro.arch"
};

static const int HAL_VARIANT_KEYS_COUNT =
    (sizeof(variant_keys)/sizeof(variant_keys[0]));

/** Base path of the hal modules */
#define HAL_LIBRARY_PATH1 "/system/lib/hw"
#define HAL_LIBRARY_PATH2 "/vendor/lib/hw"

/**
 * Load the file defined by the variant and if successful
 * return the dlopen handle and the hmi.
 * @return 0 = success, !0 = failure.
 */
static int load(const char *id,
        const char *path,
        const struct hw_module_t **pHmi)
{
    int status;
    void *handle;
    struct hw_module_t *hmi;

    /*
     * load the symbols resolving undefined symbols before
     * dlopen returns. Since RTLD_GLOBAL is not or'd in with
     * RTLD_NOW the external symbols will not be global
     */
    handle = dlopen(path, RTLD_NOW);
    if (handle == NULL) {
        char const *err_str = dlerror();
        ALOGE("load: module=%s\n%s", path, err_str?err_str:"unknown");
        status = -EINVAL;
        goto done;
    }

    /* Get the address of the struct hal_module_info. */
    const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
    hmi = (struct hw_module_t *)dlsym(handle, sym);
    if (hmi == NULL) {
        ALOGE("load: couldn't find symbol %s", sym);
        status = -EINVAL;
        goto done;
    }

    /* Check that the id matches */
    if (strcmp(id, hmi->id) != 0) {
        ALOGE("load: id=%s != hmi->id=%s", id, hmi->id);
        status = -EINVAL;
        goto done;
    }

    hmi->dso = handle;

    /* success */
    status = 0;

    done:
    if (status != 0) {
        hmi = NULL;
        if (handle != NULL) {
            dlclose(handle);
            handle = NULL;
        }
    } else {
        ALOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
                id, path, *pHmi, handle);
    }

    *pHmi = hmi;

    return status;
}

hardware/libhardware/include/hardware/hardware.h

typedef struct hw_module_t {
    /** tag must be initialized to HARDWARE_MODULE_TAG */
    uint32_t tag;

    uint16_t module_api_version;
#define version_major module_api_version
    uint16_t hal_api_version;
#define version_minor hal_api_version

    /** Identifier of module */
    const char *id;

    /** Name of this module */
    const char *name;

    /** Author/owner/implementor of the module */
    const char *author;

    /** Modules methods */
    struct hw_module_methods_t* methods;

    /** module's dso */
    void* dso;

    /** padding to 128 bytes, reserved for future use */
    uint32_t reserved[32-7];

} hw_module_t;

typedef struct hw_device_t {
    /** tag must be initialized to HARDWARE_DEVICE_TAG */
    uint32_t tag;
    uint32_t version;

    /** reference to the module this device belongs to */
    struct hw_module_t* module;

    /** padding reserved for future use */
    uint32_t reserved[12];

    /** Close this device */
    int (*close)(struct hw_device_t* device);

} hw_device_t;

#define MAKE_TAG_CONSTANT(A,B,C,D) (((A) << 24) | ((B) << 16) | ((C) << 8) | (D))

#define HARDWARE_MODULE_TAG MAKE_TAG_CONSTANT('H', 'W', 'M', 'T')
#define HARDWARE_DEVICE_TAG MAKE_TAG_CONSTANT('H', 'W', 'D', 'T')

#define HAL_MODULE_INFO_SYM         HMI
#define HAL_MODULE_INFO_SYM_AS_STR  "HMI"

以device/samsung/manta/libsensors/sensors.cpp实现为例

struct sensors_module_t HAL_MODULE_INFO_SYM = {
        common: {
                tag: HARDWARE_MODULE_TAG,
                version_major: 1,
                version_minor: 0,
                id: SENSORS_HARDWARE_MODULE_ID,
                name: "Samsung Sensor module",
                author: "Samsung Electronic Company",
                methods: &sensors_module_methods,
                dso: 0,
                reserved: {},
        },
        get_sensors_list: sensors__get_sensors_list,
};

static struct hw_module_methods_t sensors_module_methods = {
        open: open_sensors
};

/** Open a new instance of a sensor device using name */
static int open_sensors(const struct hw_module_t* module, const char* id,
                        struct hw_device_t** device)
{
    FUNC_LOG;
    int status = -EINVAL;
    sensors_poll_context_t *dev = new sensors_poll_context_t();

    if (!dev->isValid()) {
        ALOGE("Failed to open the sensors");
        return status;
    }

    memset(&dev->device, 0, sizeof(sensors_poll_device_t));

    dev->device.common.tag = HARDWARE_DEVICE_TAG;
    dev->device.common.version  = 0;
    dev->device.common.module   = const_cast<hw_module_t*>(module);
    dev->device.common.close    = poll__close;
    dev->device.activate        = poll__activate;
    dev->device.setDelay        = poll__setDelay;
    dev->device.poll            = poll__poll;

    *device = &dev->device.common;
    status = 0;

    return status;
}

struct sensors_poll_context_t {
    struct sensors_poll_device_t device; // must be first

        sensors_poll_context_t();
        ~sensors_poll_context_t();
    int activate(int handle, int enabled);
    int setDelay(int handle, int64_t ns);
    int pollEvents(sensors_event_t* data, int count);

    // Will return true if the constructor completed
    bool isValid() { return mInitialized; };

private:
    // Will be true if the constructor completed
    bool mInitialized;

    enum {
        mpl = 0,
        compass,
#ifdef ENABLE_DMP_DISPL_ORIENT_FEAT
        dmpOrient,
#endif
        light,
        pressure,
        numSensorDrivers,       // wake pipe goes here
        numFds,
    };

    static const size_t wake = numFds - 1;
    static const char WAKE_MESSAGE = 'W';
    struct pollfd mPollFds[numFds];
    int mWritePipeFd;
    SensorBase* mSensors[numSensorDrivers];

    int handleToDriver(int handle) const {
        switch (handle) {
            case ID_RV:
            case ID_LA:
            case ID_GR:
            case ID_GY:
            case ID_RG:
            case ID_A:
            case ID_M:
            case ID_O:
                return mpl;
#ifdef ENABLE_DMP_DISPL_ORIENT_FEAT
            case ID_SO:
                return dmpOrient;
#endif
            case ID_L:
                return light;
            case ID_PR:
                return pressure;
        }
        return -EINVAL;
    }
};

sensors_poll_context_t::sensors_poll_context_t()
{
    FUNC_LOG;
    CompassSensor *p_compasssensor = new CompassSensor();
    MPLSensor *p_mplsen = new MPLSensor(p_compasssensor);
    mInitialized = false;
    // Must clean this up early or else the destructor will make a mess.
    memset(mSensors, 0, sizeof(mSensors));

    setCallbackObject(p_mplsen); //setup the callback object for handing mpl callbacks
    numSensors =
        LOCAL_SENSORS +
        p_mplsen->populateSensorList(sSensorList + LOCAL_SENSORS,
                                     sizeof(sSensorList[0]) * (ARRAY_SIZE(sSensorList) - LOCAL_SENSORS));

    mSensors[mpl] = p_mplsen;
    mPollFds[mpl].fd = mSensors[mpl]->getFd();
    mPollFds[mpl].events = POLLIN;
    mPollFds[mpl].revents = 0;

    mSensors[compass] = p_mplsen;
    mPollFds[compass].fd =  ((MPLSensor*)mSensors[mpl])->getCompassFd();
    mPollFds[compass].events = POLLIN;
    mPollFds[compass].revents = 0;

#ifdef ENABLE_DMP_DISPL_ORIENT_FEAT
    mPollFds[dmpOrient].fd = ((MPLSensor*)mSensors[mpl])->getDmpOrientFd();
    mPollFds[dmpOrient].events = POLLPRI;
    mPollFds[dmpOrient].revents = 0;
#endif
    mSensors[light] = new LightSensor();
    mPollFds[light].fd = mSensors[light]->getFd();
    mPollFds[light].events = POLLIN;
    mPollFds[light].revents = 0;

    mSensors[pressure] = new PressureSensor();
    mPollFds[pressure].fd = mSensors[pressure]->getFd();
    mPollFds[pressure].events = POLLIN;
    mPollFds[pressure].revents = 0;

    int wakeFds[2];
    int result = pipe(wakeFds);
    ALOGE_IF(result<0, "error creating wake pipe (%s)", strerror(errno));
    fcntl(wakeFds[0], F_SETFL, O_NONBLOCK);
    fcntl(wakeFds[1], F_SETFL, O_NONBLOCK);
    mWritePipeFd = wakeFds[1];

    mPollFds[wake].fd = wakeFds[0];
    mPollFds[wake].events = POLLIN;
    mPollFds[wake].revents = 0;
    mInitialized = true;
}

hardware/libhardware/include/hardware/sensors.h

/*
 * sensors_poll_device_t is used with SENSORS_DEVICE_API_VERSION_0_1
 * and is present for backward binary and source compatibility.
 * (see documentation of the hooks in struct sensors_poll_device_1 below)
 */
struct sensors_poll_device_t {
    struct hw_device_t common;
    int (*activate)(struct sensors_poll_device_t *dev,
            int handle, int enabled);
    int (*setDelay)(struct sensors_poll_device_t *dev,
            int handle, int64_t ns);
    int (*poll)(struct sensors_poll_device_t *dev,
            sensors_event_t* data, int count);
};


/*
 * struct sensors_poll_device_1 is used with SENSORS_DEVICE_API_VERSION_1_0
 */
typedef struct sensors_poll_device_1 {
    union {
        /* sensors_poll_device_1 is compatible with sensors_poll_device_t,
         * and can be down-cast to it
         */
        struct sensors_poll_device_t v0;

        struct {
            struct hw_device_t common;

            int (*activate)(struct sensors_poll_device_t *dev,
                    int handle, int enabled);

            int (*setDelay)(struct sensors_poll_device_t *dev,
                    int handle, int64_t period_ns);

            int (*poll)(struct sensors_poll_device_t *dev,
                    sensors_event_t* data, int count);
        };
    };


    int (*batch)(struct sensors_poll_device_1* dev,
            int handle, int flags, int64_t period_ns, int64_t timeout);

    int (*flush)(struct sensors_poll_device_1* dev, int handle);

    void (*reserved_procs[8])(void);

} sensors_poll_device_1_t;

device/samsung/manta/libsensors/sensors.cpp

/* The SENSORS Module */
#define LOCAL_SENSORS 2
static struct sensor_t sSensorList[LOCAL_SENSORS + MPLSensor::numSensors] = {
      { "BH1721fvc Light sensor",
          "Rohm",
          1, SENSORS_LIGHT_HANDLE,
          SENSOR_TYPE_LIGHT, 65528.0f, 1.0f, 0.20f, 16000, 0, 0, { } },
      { "BMP182 Pressure sensor",
          "Bosch",
          1, SENSORS_PRESSURE_HANDLE,
          SENSOR_TYPE_PRESSURE, 1100.0f, 0.01f, 0.06f, 50000, 0, 0, { } },
};
static int numSensors = LOCAL_SENSORS;

#define SENSORS_ROTATION_VECTOR_HANDLE  (ID_RV)
#define SENSORS_LINEAR_ACCEL_HANDLE     (ID_LA)
#define SENSORS_GRAVITY_HANDLE          (ID_GR)
#define SENSORS_GYROSCOPE_HANDLE        (ID_GY)
#define SENSORS_RAW_GYROSCOPE_HANDLE    (ID_RG)
#define SENSORS_ACCELERATION_HANDLE     (ID_A)
#define SENSORS_MAGNETIC_FIELD_HANDLE   (ID_M)
#define SENSORS_ORIENTATION_HANDLE      (ID_O)
#define SENSORS_LIGHT_HANDLE            (ID_L)
#define SENSORS_PROXIMITY_HANDLE        (ID_P)
#define SENSORS_PRESSURE_HANDLE         (ID_PR)

static int sensors__get_sensors_list(struct sensors_module_t* module,
                                     struct sensor_t const** list)
{
    *list = sSensorList;
    return numSensors;
}

SensorDevice的方法,其具体的实现全部由mSensorDevice 封装的设备操作接口函数实现,这些设备操作接口在HAL层实现,其实SensorDevice只是SensorService的设备操作对象,封装了设备的操作,而这些操作实际“干活的”的是HAL层代码。

更多sensors可以参考cubieboard2的android代码:
device/softwinner/common/hardware/libsensors/{AccelSensor.cpp,GyroSensor.cpp,LightSensor.cpp,MagnetoSensor.cpp,MagSensor.cpp,PressSensor.cpp,ProximitySensor.cpp,TempSensor.cpp}

以及模拟器的实现:
development/tools/emulator/system/sensors/sensors_qemu.c
sdk/emulator/sensors/sensors_qemu.c
device/generic/goldfish/sensors/sensors_qemu.c
android版本不同,可能位于上面3个位置